REFINING THE ALGORITHM FOR A ZONAL CALCULATION
OF HEAT TRANSFER IN AN OPEN-HEARTH FURNACE

Yu.A, Zhuravl'ev, V.G. Lisienko, UDC 621.745.33:536.33
and B.I. Kitaev

A refinement of the algorithm for calculating the parameters of radiative heat transfer has
been developed and tested.

When studying the heat transfer in brightly lit open~hearth furnaces, it is necessary to take into ac-
count the nonuniform radiation characteristics of the flame and of the combustion products. The use of
zonal calculation methods under these conditions meets with difficulties at the stage of determining the
angular coefficients of interzonal radiation. The procedure for calculating the coefficient of radiative heat
transfer between zones by statistical testing (Monte Carlo method) [1, 2] can be applied to a medium with
a variable absorption coefficient under conditions of a complex geometry of the flame and the working
space,

Basic to this procedure are the nonlinear algebraic equations of heat transfer and of heat balance be~
tween zones using the coefficients of interzonal radiation f;; [2]. These coefficients represent the fraction
of the energy radiated from zone i that is absorbed by zone j, taking into account multiple reflections at
boundary surfaces. The calculation of radiative heat transfer by this method consists of two steps: first
the coefficients fij are found by statistical tests, and then the system of nonlinear algebraic equations of
the heat balance in the zones is solved, as a resulf of which the mean-zonal temperatures are determined.
Calculation of the coefficients fij by statistical testing [1] involvesthe use of a digital computer toruna series of
experiments on the observation of random radiation processes, and the transfer, absorption, and disper-
sion of the energy of individual radiation beams,

An experiment is considered to have been completed when, as a result of multiple absorptions in vol-
ume and surface zones, the energy of an individual radiation beam reaches a given sufficiently small den~-
sity 6. Depending on the optical density of the medium occupying the radiative space and the absorptivity
of the surface zones, this condition will be satisfied after some number of reflections of the individual
beam from the boundary surfaces.

This method has been used to study the heat transfer in the working space of a steel-melting furnace
under both bright flame and dark flame conditions [3]. The working space was simulated by a system of
five computation segments corresponding to five respective charging orifices (Fig.1a). Each computation
segment consisted of two volume zones (the flame zone and the zone of recirculation of the combustion
products) and three surface zones (walls, roof, and floor), The number and spacing of zones were chosen
according to the particular construction of the steel-melting furnace, and also took into consideration the
problems of determining the unknown temperature and thermal-flux distributions within the working space.
The total number of zones was 25. In order to take into account the distribution of optical parameters of
the flame more accurately, in calculating the radiation coefficients fjj the computation segments were sub~-
divided into smaller zones (Fig.1b). The absorption factors K for the volume zones (Fig.1b) were calcu-
lated from an experimental emissivity curve for the flame (Fig.2) and the path length of the beam, equal
to the flame width. An emissivity of 0.8 was assumed for the lining surface; a value of 0.6 was taken for
the floor. A more thorough description of heat-transfer models is given in {3].

Table 1 lists the average numbers of reflections experienced by an individual radiation beam in the
optical conditions and geometry of the working space of a melting furnace (Fig.1), as a function of the final
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Fig.1. Schematic diagram representing the buildup of a flame through the working space in
a steel-melting furnace (a), and the distribution of absorption factor K values over the vol-
ume zones (b): I-V) regions which correspond to charging orifices; the numbers shown in
all volume zones indicate the value of K (1/ m); r, w, f are the surface zones within the
orifice regions: 1) transmitting layer; 2) absorbing layer; 3) flame,

Fig.2. Variation of flame emissivity €; along the furnace length.

radiation flux density 6 in an individual beam and of the flame emissivity (numerator) and also the machine
time required on a Minsk-22 computer for the calculation of the coefficients fij using the zonal model of
such a furnace (denominator). Inthe case of radiative systems containing media with a low optical den~
sity and with surface reflectivities close to unity, the number of reflections experienced by an individual
beamisquite high. The computer time, which depends on the number of reflections, also becomes very
long.

An analysis of this procedure and the work of other researchers [4-7] indicates the feasibility of de-
termining the radiation coefficients fj; in two steps. Inthe first step the generalized angular coefficients
] ij are determined by statistical testing. The second step is to calculate the fjj coefficients, which take
into account reradiation of energy from the boundary surfaces, by solving systems of linear algebraic equa~-
tions.

Such a transition from generalized angular coefficients to resolvent angular coefficients with the aid
of resolvent systems of linear algebraic equations was considered earlier by Yu.A. Surinov in [4, 5]. In
[6] reradiation was taken into account by using the determinants of systems of linear algebraic equations
which describe the radiative—-energy balance for each surface, In [7] reradiation from the boundary sur-
faces was taken into account directly in solving the nonlinear algebraic equations of heat transfer and of
zonal heat balance.

In view of all the above, in the method according to [2] it is proposed to determine the coefficients
fij representing the fraction of the energy radiated fromvolume or surface zonei that is absorbed by surface
zone j by solving the following system of linear algebraic equations

- n
fi] ="l’ijAj + sz"Pikfki
=t ()
i=1,2, ..., m4n).
The energy fraction fij absorbed by volume zone j is determined by solving the following system of
equations:

i = Vi - Ry bin s
f «p,+k§ i Bin T ®
(i=12 ..., m+n).
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TABLE 1. Average Number of Reflec- Physically, these systems of equations signify that the

tions Experienced by Individual Radia- total radiative energy received by zone j from radiating zone
tion Beams at the Boundary Surfaces 'i is equal to the energy received by direct radiation from
(Numerator) and Machine Time (h) zone i to zone j plus the sum of radiation fluxes from zone i
Necessary on Minsk-22 Computer to entering zone j after reflection from each surface zone k.
icnzltcoilfte the Coefficients fij (Denom- Such a refinement of the calculation algorithm makes

it possible, by means of statistical testing, to terminate a

preseribed final- Appearance of flame single experiment whenever the given radiation beam strikes
flux density | " bright dark a boundary surface. The computer time for determining the
' generalized coefficients ¥;; for this multizone model of a
45 56 steel-melting furnace as a function of the final flux density
0,001 7.5 e 0 and the flame emissivity is shorter by a factor of 4-12
0,000001 _8_75_?0 lo.l“sﬁ (6-16 h) than that required to determine the coefficients fij

by the Monte Carlo method and does not exceed 1.5 h (Table
1). The conversion to coefficients fj; which take into account reradiation by solving systems of linear al~
gebraic equations for the given case will require less than 2 min.

At the same time, the generality of the results is extended, since the generalized angular coeffi-
cients calculated by the Monte Carlo method may be used further to determine the coefficients fij which
take into account reradiation in systems with surface zones of different absorption characteristics, and this
simplifies the solution of problems of radiative heat transfer taking into account the spectral characteris~
tics of the radiation from the surfaces. The smaller requirement for pseudorandom numbers in calculat-
ing the generalized coefficients improves the accuracy of results, since a high requirement on the amount
of pseudorandom numbers is not always associated with a requirement for their uniform distribution on
the interval (0, 1), When the zones are relatively small, furthermore, the use of the Monte Carlo method
for the direct calculation of the coefficients f;; will lead to a reduction in the accuracy, since the number
of individual radiation beams traced, both incident and consequently also reflected from a surface zone
is considerably less than the number of individual radiation beams originally emanating from the radiating
zone,

An analysis of Eqs. (1) and (2) shows that it is convenient to begin the calculations by determining the
radiation coefficients fj;j for the surface zones. This allows the solution to be limited to an n-th order sys-
tem of equations, where n is the number of surface zones. The second step in solving the given problem
(determination of the coefficients fij for the volume zones) reduces, as a result of this, to a simple cal-
culation according to Egs. (1) and (2), their right-hand sides containing no unknowns.

Systems (1) and (2) (i = 1,2, ..., n) will be represented in matrix form (the number of systems of
equationsisequalto m + n, i.e., the number of ab_sorbing zones j):
3
Aih fij = bij’ 3
where
A TR T EFEk (4)
U =Ry for i=k
and
'bi]. =Py, AJ., 1f] 'is a swrface zone; (5)
bi]. =1;;, if j is a volume zone,

Examining Eqgs. (1)-(4), we findthat matrix Aj(n X n dimensional) is the same for n systems of

Eqgs. (1) as for m systems of Eqgs.(2). The difference between these systems of equations consists only in
the different magnitude of vectors bij, which can be expressed in terms of a maxtrix of dimension n X (m
+n). A survey of the methods by which systems of linear equations are solved [8, 9] shows that solution
by means of the inverse matrix is most suitable in this case, since, having transformed matrix Ajj (4)
of the coefficients in systems (1) and (2) into the inverse matrix Aﬁi, the solution of each individual sys-
tem of n equations can be obtained by multiplying the inverse matrix Aﬁé (which is common to all systems
of equations) by the vector bij which corresponds to the system of equations in questioni.e,,

fkj = A:];l bij‘ (6)
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TABLE 2. Values of the Radiation Coefficients
fjj Calculated by the Proposed Algorithm (I)
and Directly by the Monte Carlo Method (IT).
Radiation from the flame (Volume Zone No.7)*

. v No, of !

Absorbing zone |computation| 7 (D fi; D
.Segl'ﬂgﬂ[

1 I 0,001 0,001
‘ 2 0,000 0,000
8 3 I 0,008 0,007
§ 4 0,000 0,000
5 0,044 0,043
g 6 u 0,012 0,012
= 7 v 0,090 0,087
> 8 0,034 0,035
9 v 0,015 0,017
10 0,017 0.015
1 0,002 0,002
12 I 0,003 0,003
13 0,000 0,000
14 0,004 0,005
15 1 0,007 0,008
16 0.001 0,001
@ 17 0,041 0,040
= 18 1 0,048 0,047
8 19 0,021 0,022
g 20 0,203 0,210
g 91 I\ 0,116 0,115
3 29 0,176 0,176
923 0,063 0,065
2 v 0,061 0,056
25 0,035 0,030

*The zone numbers are assigned as follows; 1, 3,57,9 are
flame zones; 2,4, 6, 8, 10 are zones of the radiation-trans-

mitting and of the radiation-absorbing layer; 11,14, 17, 20,
23, are wall zones; 12,15, 18, 21, 24 roof zones; 13,16, 19,
22, 25 floor zones.

Therefore, although matrix inversion requires more computation time than other procedures for
solving systems of linear equations, the total computation time for solving m + n systems of equations is
short, because the most laborious operation, matrix inversion, must be performed only once,

The results obtained by calculating the radiation coefficients f;; for the zonal model of a steel-melt-
ing furnace (Fig.1) according to the procedure of [1] before and after refinement indicate that the respec-
tive values do not differ much, even though the calculation schedule has been changed considerably. The
absolute divergence does not exceed 0.023 and in individual rows (Table 2) it does not exceed 0.007, Thus,
the accuracy of determining the radiation coefficients fjj depends essentially on the accuracy of the Monte
Carlo method in calculating the angular coefficients. Calculations performed in [1, 10], as well as our
evaluation of the error in determining geometrical and generalized angular coefficients for the different
faces of a parallelepiped or a cube show that for 2000 statistical tests an accuracy of 2-2.5% is attained.
The accuracy can be improved by increasing the number of tests and by matching this with a program for
generating pseudorandom numbers.

NOTATION

K is the volume absorption factor for the medium, m-1;

Aj is the absorptivity (emissivity) of surface zone j;
Ry is the reflectivity of surface zone k;
is the coefficient of the radiation from zone i to zone j, taking info account reradiation from surface
zones;
lliij is the mean generalized angular coefficient of radiation from zone i to zone j;
is the prescribed final flux density in a radiation beam;
€  is the emissivity of the flame;
i is the length of the working space in the furnace, m;

1378



Ajk

-~ O U W
v e & e e

10,

is the matrix of the coefficients in the system of linear algebraic equations;
is the inverse matrix of Aji.
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