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A refinement of the algori thm for calculating the pa rame te r s  of radiative heat t ransfer  has 
been developed and tested.  

When studying the heat t ransfer  in brightly lit open-hear th  furnaces,  it is neces sa ry  to take into a c -  
count the nonuniform radiation charac te r i s t i c s  of the flame and of the combustion products .  The use of 
zonal calculation methods under these conditions meets  with difficulties at the stage of determining the 
angular coefficients of interzonal radiation. The procedure  for calculating the coefficient of radiative heat 
t ransfer  between zones by stat is t ical  testing (Monte Carlo method) [1, 2] can be applied to a medium with 
a variable absorption coefficient under conditions of a complex geomet ry  of the flame and the working 
space.  

Basic to this p rocedure  are  the nonlinear algebraic equations of heat t ransfer  and of heat balance be-  
tween zones using the coefficients of interzonal radiation fij [2]. These coefficients represent  the fraction 
of the energy radiated f rom zone i that is absorbed by zone j, taking into account multiple ref lect ions at 
boundary sur faces .  The calculation of radiat ive heat t ransfer  by this method consists  of two steps: f i rs t  
the coefficients fij are  found by stat is t ical  tests ,  and then the sys tem of nonlinear algebraic equations of 
the heat balance in the zones is solved, as a resul t  of which the mean-zonal  t empera tu res  are  determined.  
Calculation of the coefficients fij by stat is t ical  testing [1] involves the use of a digital computer to run a ser ies  of 
experiments  on the observation of random radiation p rocesses ,  and the t ransfer ,  absorption, and d i sper -  
sion of the energy of individual radiation beams.  

An experiment is considered to have been completed when, as a resul t  of multiple absorpt ions in vol -  
ume and surface zones, the energy of an individual radiation beam reaches  a given sufficiently small den- 
sity 5. Depending on the optical density of the medium occupying the radiative space and the absorpt ivi ty 
of the surface zones, this condition will be satisfied after  some number of ref lect ions of the individual 
beam f rom the boundary surfaces .  

This method has been used to study the heat t r ans fe r  in the working space of a s teel -mel t ing furnace 
under both bright flame and dark flame conditions [3]. The working space was simulated by a sys tem of 
five computation segments  corresponding to five respect ive  charging orif ices (Fig. la) .  Each computation 
segment consisted of two volume zones (the flame zone and the zone of rec i reula t ion of the combustion 
products) and three surface zones (walls, roof, and floor). The number and spacing of zones were chosen 
according to the par t icular  construction of the s teel-melt ing furnace, and also took into considerat ion the 
problems of determining the unknown temperature and thermal-flux distributions within the working space. 
The total number of zones was 25. In order to take into account the distribution of optical parameters of 
the flame more accurately, in calculating the radiation coefficients fij the computation segments were sub- 
divided into smaller zones (Fig. lb). The absorption factors K for the volume zones (Fig. lb) were calcu- 
lated from an experimental emissivity curve for the flame (Fig. 2) and the path length of the beam, equal 
to the flame width. An emissivity of 0.8 was assumed for the lining surface; a value of 0.6 was taken for 
the floor. A more thorough description of heat-transfer models is given in [3]. 

Table 1 lists the average numbers of reflections experienced by an individual radiation beam in the 
optical conditions and geometry of the working space of a melting furnace (Fig. 1), as a function of the final 
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Fig. 2 

Fig. 1. Schematic  d i ag ram rep resen t ing  the buildup of a f lame through the working space in 
a s t ee l -me l t ing  furnace (a), and the distr ibution of absorpt ion  factor  K values  over  the vo l -  
ume zones (b): I-V) regions  which co r re spond  to charging or i f ices ;  the numbers  shown in 
all volume zones indicate the value of K ( l /m) ;  r ,  w, f a r e  the sur face  zones within the 
or i f ice  regions:  1) t ransmi t t ing  layer;  2) absorbing  layer;  3) f l ame .  

Fig. 2. Var ia t ion of f lame emiss iv i ty  sf along the furnace length. 

radia t ion flux density 5 in an individual beam and of the f lame emi s s iv i t y  (numerator)  and a lso  the machine 
t ime  requ i red  on a Minsk-22 computer  for the calculat ion of the coeff icients  fij using the zonal model of 
such a furnace (denominator).  In the case  of radia t ive  s y s t e m s  containing media  with a low optical den-  
s i ty and with sur face  re f lec t iv i t i es  close to unity, the number  of re f lec t ions  exper ienced  by an individual 
beam is quite high. The computer  t ime,  which depends on the number  of ref lec t ions ,  a lso becomes  ve ry  
long. 

An analys is  of this p rocedure  andthe  workof  other r e s e a r c h e r s  [4-7] indicates  the feas ibi l i ty  of de-  
t e rmin ing  the radia t ion  coefficients  fij in two s teps .  In the f i r s t  step the genera l ized  angular  coeff icients  
r  a r e  de te rmined  by s ta t i s t ica l  test ing.  The second step is  to calculate  the fij coefficients,  which take 
into account r e rad ia t ion  of energy  f rom the boundary su r faces ,  by solving s y s t e m s  of l inear  a lgebra ic  equa-  
t ions.  

Such a t rans i t ion  f r o m  genera l ized  angular  coeff icients  to reso lvent  angular  coeff icients  with the aid 
of reso lvent  s y s t e m s  of l inear  a lgebra ic  equations was cons idered  ea r l i e r  by Yu.A. Surinov in [4, 5]. In 
[6] r e rad ia t ion  was taken into account by using the de te rminants  of s y s t e m s  of l inear  a lgebra ic  equations 
which desc r ibe  the r ad i a t i ve - ene rgy  balance for each su r face .  In [7] r e rad ia t ion  f r o m  the boundary s u r -  
faces  was taken into account d i rec t ly  in solving the nonlinear a lgebra ic  equations of heat t r a n s f e r  and of 
zonal heat balance.  

In view of all  the above, in the method according  to [2] it is p roposed  to de te rmine  the coefficients  
fij r ep re sen t ing  the f rac t ion  of the energy  rad ia ted  f r o m v o l u m e  or sur face  zone i that is absorbed  by sur face  
zone j by solving the following s y s t em  of l inear  a lgebra ic  equations 

n 

k=, (1) 

(i= I, 2 ..... re+n). 

The energy fraction fij absorbed by volume zone j is determined by solving the following system of 

equations: 
n 

~=1 (2) 

( i = l ,  2 . . . . .  r e+n) .  
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TABLE 1. Average Number of Ref lec-  
tions Experienced by Individual Radia-  
tion Beams at the Boundary Surfaces 
(Numerator) and Machine Time (h) 
Necessa ry  on Minsk-22 Computer to 
Calculate the Coefficients fij (Denom- 
inator) 

Prescribed final- 
flux density 

Appearance of flame 

--,  bright dark 

0,001 

0,000001 

4--5 
7,5 

8--10 
15 

5--6 
9 

10--12 
18 

Physical ly,  these sys tems of equations signify that the 
total radiative energy received by zone j f rom radiating zone 
i is equal to the energy rece ived  by direct  radiation f rom 
zone i to zone j plus the sum of radiation fluxes f rom zone i 
entering zone j after ref lect ion f rom each surface zone k. 

Such a refinement of the calculation a lgor i thm makes 
it possible,  by means of stat ist ical  testing, to terminate  a 
single experiment whenever the given radiation beam str ikes  
a boundary surface.  The computer t ime for determining the 
general ized coefficients ~ij for this multizone model of a 
s tee l -mel t ing  furnace as a function of the final flux density 
5 and the flame emiss ivi ty  is shor ter  by a factor of 4-12 
(6-16 h) than that required to determine the coefficients fij 
by the Monte Carlo method and does not exceed 1.5 h (Table 

1). The convers ion to coefficients fij which take into account reradia t ion by solving sys tems  of l inear a l -  
gebraic equations for the given case will require  less  than 2 min. 

At the same time, the general i ty of the resul ts  is extended, since the general ized angular coeffi-  
cients calculated by the Monte Carlo method may be used further  to determine the coefficients fij which 
take into account reradia t ion  in sys tems  with surface zones of different absorption charac te r i s t i cs ,  and this 
simplif ies the solution of problems of radiative heat t ransfer  taking into account the spectra l  c h a r a c t e r i s -  
t ics of the radiat ion f rom the sur faces .  The smal ler  requirement  for pseudorandom numbers  in calculat-  
ing the general ized coefficients improves  the accuracy  of resul ts ,  since a high requirement  on the amount 
of pseudorandom numbers  is not always associa ted  with a requirement  for their uniform distribution on 
the intervaI (0, 1). When the zones are  re la t iveiy small,  fur thermore ,  the use of the Monte Carlo method 
for the direct  calculation of the coefficients fij will lead to a reduction in the accuracy,  since the number 
of individual radiation beams traced,  both incident and consequently also ref lected f rom a surface zone 
is considerably less  than the number of individual radiat ion beams originally emanating f rom the radiating 
zone. 

An analysis of Eqs. (1) and (2) shows that it is convenient to begin the calculations by determining the 
radiation coefficients fij for the surface zones. This allows the solution to be limited to an n-th order sys- 
tem of equations, where n is the number of surface zones. The second step in solving the given problem 
(determination of the coefficients fij for the volume zones) reduces, as a result of this, to a simple cal- 
culation according to Eqs. (I) and (2), their right-hand sides containing no unknowns. 

Systems (I) and (2) (i = i, 2 ..... n) will be represented in matrix form (the number of systems of 
equations is equal to m + n, i.e., the number of absorbing zones j): 

where 

Ai~, f u  = bu,  
(3) 

A ~  = / - R h % ~  for i r k, (4) 
[1 --Rg~ih for i = k 

and 

.b~j = %~iiAj, if j is a surface zone; (5) 
bi] -~- ~i], .if j is a volume zone. 

Examining Eqs. (1)-(4), we findthat matr ixAik(n • n dimensional) is the same for n sys tems of 
Eqs.  (1) as for m sys tems  of Eqs. (2). The difference between these sys tems of equations consists  only in 
the different magnitude of vec to rs  bij , which can be expressed  in t e rms  of a maxtrix of dimension n x (m 
+ n). A survey of the methods by which sys tems  of l inear equations are  solved [8, 9] shows that solution 
by means of the inverse  matr ix  is most  suitable in this case,  since, having t r ans fo rmed  matr ix  Aik (4) 
of the coefficients in sys tems  (1) and (2) into the inverse matr ix  AltO, the solution of each individual sys -  
tem of n equations can be obtained by multiplying the inverse  matr ix  A[t ~ (which ks common to all sys tems  
of equations) by the vector  bij which corresponds  to the sys tem of equations in question i . e . ,  

A-1 fh] = ik bw (6) 
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T A B L E  2. Va lues  of the  R a d i a t i o n  Coe f f i c i en t s  
f i j  C a l c u l a t e d  by  the P r o p o s e d  A l g o r i t h m  {I) 
and  D i r e c t l y  by  the  Monte  C a r l o  Method (I!). 
R a d i a t i o n  f r o m  the  f l a m e  (Volume Zone No. 7)* 

[No. o-~-I 
Absorbing zone computation 

,segment 

1 
2 I 

3 

~, 5 III 6 

7 IV 
8 

,~ v 

o~ 

I1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

I 

II 

III 

IV 

V 

f~ (I) [i] (II) 

0,001 0,001 
0,000 0,000 
0,006 0,007 
0,000 0,000 
0,044 0,043 
0,012 0,012 
0,090 0,087 
0,034 0,035 
0,015 0,017 
0,017 0,015 

0,002 0,002 
0,003 0,003 
0,000 0,000 
0,004 0,005 
O,007 0,O08 
0,001 0,001 
0,041 0,040 
0,O48 0,O47 
0,021 0,O22 
0,203 0,210 
0,116 0,115 
o, 176 o, 176 
o, 063 o, 065 
0,061 0,056 
0,035 0,030 

*The zone numbers are assigned as follows: 1, 3, 5, 7, 9 are 
flame zones; 2, 4, 6, 8, 10 are zones of the radiation-trans- 
mitting and of the radiation-absorbing layer; 11, 14, 17, 20, 
23, are wall zones; 12, 15, 18, 21, 2~ roof zones; 13, 16, 19, 
22, 25 floor zones. 

T h e r e f o r e ,  a l though  m a t r i x  i n v e r s i o n  r e q u i r e s  m o r e  c o m p u t a t i o n  t i m e  than  o the r  p r o c e d u r e s  for  
so lv ing  s y s t e m s  of l i n e a r  equa t ions ,  the  t o t a l  c o m p u t a t i o n  t i m e  for  so lv ing  m + n s y s t e m s  of equa t ions  i s  
sho r t ,  b e c a u s e  the m o s t  l a b o r i o u s  ope ra t i on ,  m a t r i x  i n v e r s i o n ,  mus t  be  p e r f o r m e d  only once .  

The  r e s u l t s  ob ta ined  by c a l c u l a t i n g  the  r a d i a t i o n  c o e f f i c i e n t s  fij  for  the  zona l  m o d e l  of a s t e e l - m e l t -  
ing f u r n a c e  ( F i g .  1) a c c o r d i n g  to  the  p r o c e d u r e  of [1] b e f o r e  and a f t e r  r e f i n e m e n t  i n d i c a t e  tha t  the  r e s p e c -  
t ive  v a l u e s  do not d i f f e r  much,  even  though the c a l c u l a t i o n  s c h e d u l e  has  been  changed  c o n s i d e r a b l y .  The  
a b s o l u t e  d i v e r g e n c e  does  not e x c e e d  0.023 and in  ind iv idua l  r o w s  (Table  2) it does  not e x c e e d  0.007.  Thus ,  
the  a c c u r a c y  of d e t e r m i n i n g  the  r a d i a t i o n  c o e f f i c i e n t s  fi j  depends  e s s e n t i a l l y  on the a c c u r a c y  of the  Monte 
C a r l o  m e t h o d  in c a l c u l a t i n g  the  a n g u l a r  c o e f f i c i e n t s .  C a l c u l a t i o n s  p e r f o r m e d  in [1, 10], a s  we l l  a s  our  
e v a l u a t i o n  of the  e r r o r  in d e t e r m i n i n g  g e o m e t r i c a l  and g e n e r a l i z e d  a n g u l a r  c o e f f i c i e n t s  for  the d i f f e r en t  
f a c e s  of a p a r a l l e l e p i p e d  o r  a cube  show that  for  2000 s t a t i s t i c a l  t e s t s  an  a c c u r a c y  of 2-2.5% i s  a t t a i n e d .  
The  a c c u r a c y  can  be  i m p r o v e d  by  i n c r e a s i n g  the n u m b e r  of t e s t s  and  by  m a t c h i n g  t h i s  wi th  a p r o g r a m  for  
g e n e r a t i n g  p s e u d o r a n d o m  n u m b e r s .  

N O T A T I O N  

K i s  the  v o l u m e  a b s o r p t i o n  f a c t o r  fo r  the  m e d i u m ,  m - i ;  
Aj i s  the  a b s o r p t i v i t y  ( e m i s s i v i t y )  of s u r f a c e  zone  j; 
R k i s  the  r e f l e c t i v i t y  of s u r f a e e  zone k; 
fij  i s  the  coe f f i c i en t  of the  r a d i a t i o n  f r o m  zone i to zone  j, t ak ing  into account  r e r a d i a t i o n  f r o m  s u r f a c e  

zones ;  
~ij i s  the  m e a n  g e n e r a l i z e d  a n g u l a r  coe f f i c i en t  of r a d i a t i o n  f r o m  zone i to  zone j; 
6 i s  the  p r e s c r i b e d  f ina l  f lux d e n s i t y  in a r a d i a t i o n  b e a m ;  
ef is the  e m i s s i v i t y  of the  f l ame ;  
l i s  the  l eng th  of the  work ing  s p a c e  in the  f u r n a c e ,  m; 
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Aik is the matrix of the coefficients in the system of linear algebraic equations; 
Ai- ~ is the inverse matrix of Aik. 
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